

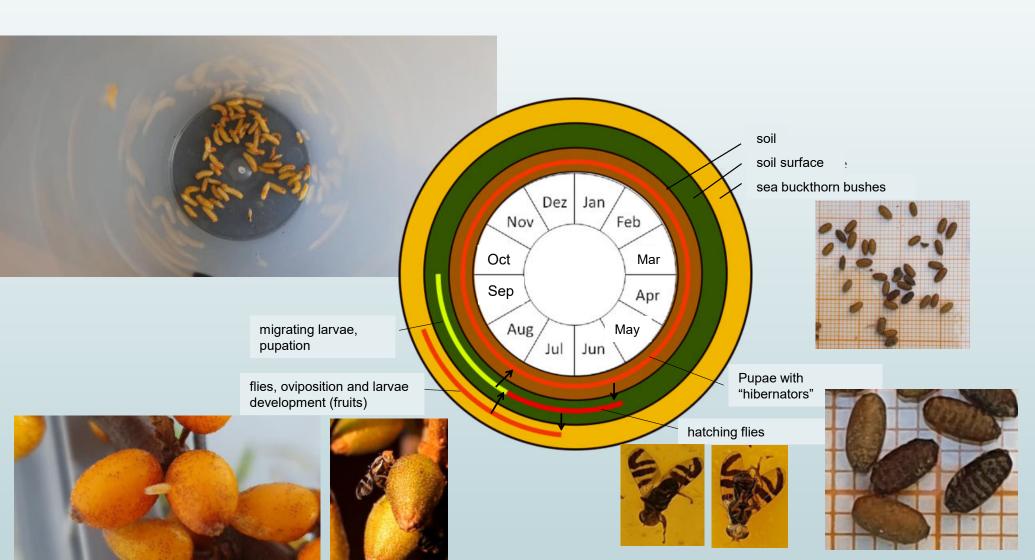
DEVELOPMENT OF STRATEGIES TO CONTROL SEA BUCKTHORN FRUIT FLY IN ORGANIC FARMING

Sabine Altmann, Thorsten Rocksch

Humboldt-Universität zu Berlin Faculty of Life Science Division of Biosystem Engineering

OUTLINE

- Sea buckthorn fruit fly (SBF) in Germany
- Biology of SBF
- Project modules
 - Traps
 - Soil covering
 - Soil tillage
 - Macroorganisms
 - Varieties
- Summary


SEA BUCKTHORN FRUIT FLY IN GERMANY

- first occurrence in 2012
- rapid spread especially in orchards around Berlin
- very differentiated infestation situation
- major damage in sea buckthorn orchards since 2015 (>20% infestation)
- MoPlaSa-Project 2019-2022

Goal:

Development of a <u>mo</u>dular <u>pla</u>nt protection <u>stra</u>tegy based on different sustainable, non-chemical methods to control the sea buckthorn fly

KNOWLEDGE ABOUT THE BIOLOGY OF SEA BUCKTHORN FRUIT FLY

Sabine Altmann, Thorsten Rocksch

Practical tasks and trials

- screening sands for pupae
- monitoring flight season (orchards, also in big cages)
- hatching trials (i. a. temperature threshold, phenology) laboratory, climatic chamber, greenhouse
- traps (many variations and baits, also different colors); chicken
- microorganisms (entomopathogenic fungi, *Bacillus thuringiensis*) laboratory, semi field
- soil cultivation semi field, field
- barriers (permanent, temporary) semi field, field
- nematodes laboratory, semi field, field
- varieties (infestation level and trigger) laboratory, field
- parasitism level by antagonists laboratory
- combination micro- macroorganisms and adhesives laboratory, field

1. Traps

Investigations

- testing of different traps and attractants
- use for flight monitoring or also mass trapping ?

1. Traps

Results

250 Mean value of daily catch numbers of SBF 200 -2019 -2020 150 -2021 100 50 0 106. 1806. 1806. 0101. 0301. 601. 301. 1301. 1301. 1301. 101. 1801. 1801. 1801. 1801. 1801. 1801. 1808. 1808. 1808. 1808. 1808.

Daily catch number of seabuckthorn fly (mean value from three yellow cross glue traps, research station Berlin-Dahlem) 2019-2021

Sabine Altmann, Thorsten Rocksch

1. Traps

Results

- best catch results with yellow cross glue traps
- wasp traps + ammonium carbonate bait (4 weeks durability)
- evaporation of wasp traps: decrease by addition of propylene glycol
- by-catch: glue traps higher than wasp traps
- decrease in catch numbers 2019-2022

Conclusion

- effective means to monitor flight characteristics (start, climax, number), not for mass trapping

2. Barriers

Investigations

- A) permanent: woven tapes, wood chips, biodegradable foils
- B) temporary: biodegradable liquid adhesives with aggregates (cellulose, wood fibers)

'search window' for soil sampling to determine the number of pupae in the soil under woven tapes

spreading of wood chips to cover the ground

Aims

= soil covers against burrowing of larvae or hatching of flies

→ permeability/durability of material, mobility of larvae

2. Barriers

Results

A) permanent:

- less pupae below woven tapes
- no impeding effect of wood chips

B) temporary:

- liquid adhesives: hints to less emerging flies

<u>Issues:</u>

A) high expenditure (mobility of larvae: range at least 80 cm), obstructive, use of plastics

B) no organic certification of aggregates feasible, unnoticed parasitism: no conclusive results

Conclusion

- A) not practicable ; B) unreliable; A)/B) environmental impact

Sabine Altmann, Thorsten Rocksch

3. Mechanical soil cultivation

Investigations

- soil cultivation in the bushes row
- aim: effective impairment of pest (no further development from pupa to imago) through different tillage tools (disc or rotary harrow)

3. Mechanical soil cultivation

Trial

- experimental area beside a sea buckthorn orchard
- subdivision into 3 plots, placing 100 pupae in each

Sabine Altmann, Thorsten Rocksch

3. Mechanical soil cultivation

Results

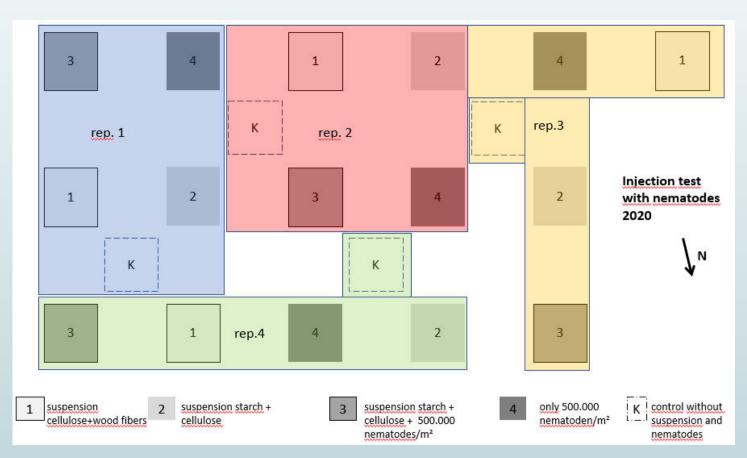
- very few fruit flies found (also in the control)
- interfering external influences (sun exposure, loose soil, late monitoring): no conclusive results
- hypothesis: existence of a connection between soil cultivation and spreading of sea buckthorn disease inducing pathogen

Conclusion

- no further investigations

4. Macroorganisms - A)

Aims


 Reduction of hatching flies by nematodes (small plot experiments)

Results

 hints to hatching rate reduction of SBF but masked by external interfering impacts (drought, predators)

Conclusion

- not unreservedly recommendable

4. Macroorganisms - B

Aims

 reduction of SBF through parasitism by natural antagonists (investigation of entomologists of Leibniz Centre for Agricultural Landscape Research

Bracnoid wasp hatched from SBF pupa

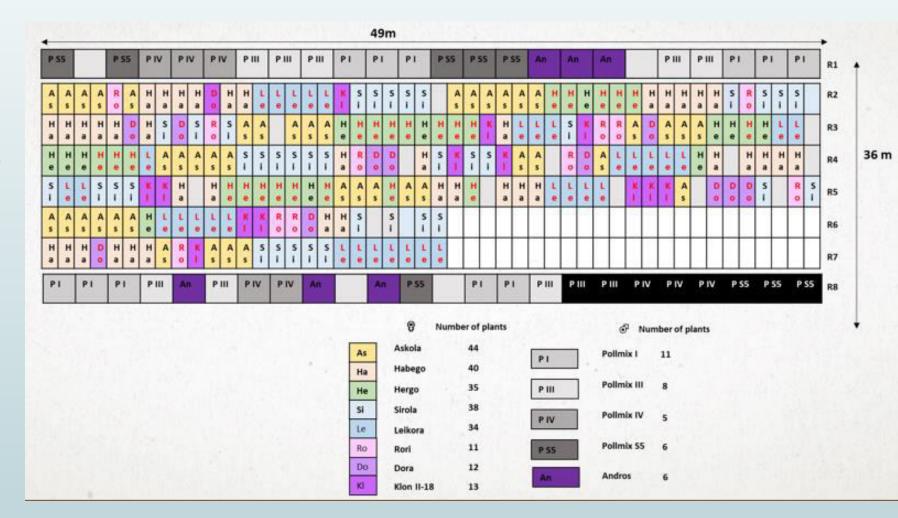
Results

- increasing number of infested pupae by parasites
- mainly Bracnoid wasp (Braconidae)
- occasionally Ichneumon fly (*Ichneumonoidea*)

Conclusion

support of parasites of SBF very advantageous

Ichneumon fly hatched from SBF pupa


Sabine Altmann, Thorsten Rocksch

5. Varieties - Infestation

Investigations

- differences in the susceptibility to SBF
- reasons for the preference for a particular variety
- sea buckthorn orchard, HU-Berlin, Dahlem:
 - German varieties: `Habego`, `Hergo`, `Sirola`, `Leikora`, `Askola`
 - Romanian varieties `Klon`, `Rori`, `Dora`
 - 9 up to 42 shrubs/variety

5. Varieties - Infestation

Trials:

submersion of fruits – catching of larvae
catching of pupae from cut branches
optical evaluation of infestation of shrubs
investigations on phenology and morphology,
determination of ascorbic acid and sugar content

Sabine Altmann, Thorsten Rocksch

5. Varieties - Infestation

Results:

distinctions:

extremely susceptible (Infestation up to max. 100 %) = Sirola very susceptible (Infestation up to max. 90 %) = Leikora, Habego medium susceptible (Infestation up to max. 70 %) = Askola, Klon little susceptible (Infestation up to max. 10 %) = Rori, Dora, Hergo

Sabine Altmann, Thorsten Rocksch

5. Varieties - Infestation

Conclusion

- less susceptible varieties are identified

- no clear influence on the preference of the SBF derivable according to : development stages
 - amount of ascorbic acid or sugar
- tendency of SBF to varieties with big fruit with soft skin

HI 3850 Ascorbic acid test kit

sample centrifugation before sugar determination

measurement of the penetration resistance

Sabine Altmann, Thorsten Rocksch

TAKE HOME

Traps:

 wasp traps + ac-bait (+propylene glycol) suitable for monitoring (start of treatment) + better protection of beneficial organisms

Barriers:

- control effect not entirely reliable, environmental compatibility questionable

Nematodes/microorganisms:

- control effect not (fully) proven

Antagonists:

- high potential – promotion/protection is crucial

Varieties:

- less susceptible varieties are identified
- promising strategy: "Opferpflanzenkonzept"

ACKNOWLEDGEMENT

Many thanks to the operational group and the associated partners for the work on this project!

Thanks for the funding of the project to the EU and the state of Brandenburg

6th European Workshop on Sea Buckthorn – EuroWorkS 2024, 26./27.08.2024, Pruzkow, Poland

LAND BRANDENBURG

funded by

European